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Abstract
The temporal profile of the electron bunch is of critical

importance in accelerator areas such as free-electron lasers
and novel acceleration. In FELs, it strongly influences fac-
tors including efficiency and the profile of the photon pulse
generated for user experiments, while in novel acceleration
techniques it contributes to enhanced interaction of the wit-
ness beam with the driving electric field. Work is in progress
at the CLARA facility at Daresbury Laboratory on tempo-
ral shaping of the ultraviolet photoinjector laser, using a
fused-silica acousto-optic modulator (AOM). Generating
a user-defined (programmable) time-domain target profile
requires finding the corresponding spectral phase configura-
tion of the shaper; this is a non-trivial problem for complex
pulse shapes. Using a physically informed machine learn-
ing model, we demonstrate accurate and rapid shaping of
the photo-injector laser to a wide range of arbitrary target
temporal intensity profiles on the CLARA PI laser. Addition-
ally, we discuss the utility of this expanded range of laser
pulse shapes to potential applications in FELs and novel
acceleration.

INTRODUCTION
In photoinjector systems, control over the longitudinal

properties of the electron bunch can be achieved by temporal
shaping of the laser pulse temporal profile [1]. Following
the temporal shaping concept presented in [2], we developed
an apparatus for temporally shaping the photoinjector laser
pulses at CLARA, shown schematically in Fig. 1. The input
laser pulse is spectrally dispersed by a transmission grating.
A concave mirror one focal length away from the grating
collimates the spectrum and focuses the laser pulse to a line
focus, along which the laser wavelength varies approximately
linearly. A fused-silica AOM is placed at the position of
the focus, and a transducer driven with an RF waveform at
200 MHz central frequency generates an acoustic wave in the
AOM, which propagates along the line focus of the laser. The
laser pulses are diffracted from the induced refractive index
modulation, and the spectral components are recombined
using a second concave mirror and transmission grating.

To shape the laser pulse temporally, the spectral phase can
be adjusted by varying the temporal phase of the acoustic
wave via the temporal phase of the RF drive wave. The
laser pulses can also be shaped temporally by varying the
temporal amplitude of the acoustic wave; however, as this
approach is lossy, all shaping must be carried out using only
the phase. In order to produce a specific target pulse tempo-
ral intensity profile, we must find a suitable spectral phase
mask to apply to the shaper. This is non-trivial for arbitrary
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Figure 1: Schematic of the temporal pulse shaper at CLARA.

shapes, as we need both the phase and amplitude in either
the spectral or temporal domain to fully define the pulse. We
know only the temporal and spectral intensity, leaving the
temporal and spectral phase as unknowns with many poten-
tial solutions. The complexity of real experimental systems
poses additional challenges. For example, there are limita-
tions imposed by the physical characteristics of the AOM.
Modulating the spectral phase by modulating the temporal
phase of the RF wave broadens the RF spectrum. The AOM
has a finite acoustic bandwidth, and the RF spectrum must
remain within this bandwidth for spectral phase modulations
to be physically realisable.

Machine learning approaches excel for complex non-
linear problems such as this. In particular, deep neural net-
works are capable of approximating any function[3], and
recent work has demonstrated that such networks can be used
to learn and manipulate spectral, temporal, and shape prop-
erties of laser pulses[4][5]. Recent research has explored
encoding physical laws into machine learning models with
partial differential equations as priors[6] to reduce the data
requirements of these otherwise data-intensive approaches.
This approach is known as Physically Informed Neural Net-
works (PINNs) and can be used to constrain the output of
deep neural networks to physical reality, by encoding prop-
erties such as conservation of energy.

In this paper, we present a PINN for finding the spectral
phase mask required to produce a target temporal intensity
profile in our photoinjector laser pulse shaper, subject to
the physical limitation of the AOM bandwidth. Our ap-
proach both reduces the data requirements of our model and
constrains the search space to a physically realisable range.
Thus, we can be confident that the temporal intensity profiles
produced by our model will be experimentally achievable.

In addition to the constraints of the physical system, we
can also encode the inherent symmetries of the underlying
physical system. By employing the principles of geometric
deep learning[7], we can exploit those symmetries to reduce
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the complexity of the underlying parameter space. In partic-
ular, we can exploit the translation-invariant nature of the
temporal pulse shape, since the structure of the pulse signal
is our primary concern and pulse timing can be adjusted
without consequence. This allows us to consider alternative
loss functions, such as the Pearson correlation coefficient,
rather than the mean squared error functions of other works,
and significantly improve our results by expanding the po-
tential search space.

APPLICATIONS TO NOVEL
ACCELERATION

Arbitrary laser pulse shaping enables several technologies,
which we consider here. Future work will likely see these
methods applied to CLARA.

The FEBE arc system[8] contains a mask array for lon-
gitudinal shaping of the beam. This enables the genera-
tion of a variety of longitudinal bunch distributions such as
drive/main bunch-pairs with variable delay, a single ultra-
short ( fs) low charge bunch, and a drive bunch with a train
of witness bunches. Having the PI laser pulse ‘precondition’
the electron beam will make the FEBE mask more efficient
by allowing more charge transport through the mask.

Echo-Enabled Harmonic Generation (EEHG) is used in
FELs for the production of high-intensity, narrow bandwidth
X-ray photons. A low-energy laser pulse is used to induce
a sinusoidal energy modulation in the bunch which is then
sent through a chicane to convert the energy modulation
into a density modulation. This is then repeated with a
second laser pulse to produce microbunching suitable for
high coherence lasing in an undulator. Fluctuations in laser
power can significantly affect performance, and present a
significant obstacle in the EEHG regime[9]. However we
may be able to use this property with the temporal laser
pulse shaping for the production of multi-colour EEHG by
carefully crafting the pulse to modulate different regions of
the bunch by different amounts so that each region ends up
microbunched at a different harmonic of the seed laser.

For laser-driven wakefield acceleration, the driving laser
pulse shape has significant impact[10][11]. Optimisation
of laser-plasma interactions for laser-driven particle accel-
eration could therefore be an interesting future direction
for research. However, as AOM shaping is not possible at
extremely high energies due to the energetic limits of the
optics, the pulse would likely need to be shaped while in a
low energy regime.

METHODOLOGY
Using simulated data, we developed and tested a machine

learning model to find the phase mask required to achieve
a particular target pulse temporal profile. The simulated
laser pulses used for training and testing the model have a
spectral intensity with Gaussian shape in wavelength, central
wavelength of 266 nm, and FWHM bandwidth of 1.5 nm.
As pulses in the CLARA photoinjector laser system are
temporally stretched in a grating stretcher before entering

Figure 2: Example of training sample generated by com-
positing shapes.

the shaper, our simulated unshaped pulses have 8 × 104 fs2

of spectral phase applied. We generated 105 pairs of spectral
phase profiles and corresponding temporal intensity profiles
for the training set, and 103 pairs for the test set. Each pair
consists of a spectral phase profile of 2283 samples over
5.33 nm and a temporal intensity profile of 271 samples
over 12 ps. In order to improve our results on human-crafted
targets, 25% of the dataset is generated by compositing a
selection of shapes with randomised parameters, an example
of which can be seen in Fig. 2.

To constrain our model to the physical limits of the AOM
bandwidth, we consider the effect of AOM bandwidth on
the spectral phase mask. Modulating the temporal phase
of the RF drive wave broadens its spectrum; the instanta-
neous RF frequency at a particular point in time is given by
the gradient of its temporal phase at that point. The AOM
bandwidth limits the gradient of the acoustic wave temporal
phase modulation, and consequently the limits on the avail-
able phase modulation per unit length along the acoustic
wave propagation direction are

d𝜑
d𝑥

= ±𝜋Δ 𝑓ac
𝑣ac

, (1)

where 𝜑 is the phase modulation, 𝑥 is the spatial coordinate
across the AOM window, 𝑣ac = 5968 m s−1 is the acoustic
velocity in fused silica, and Δ 𝑓ac ≈ 100 MHz is the AOM
acoustic bandwidth. The change in laser wavelength per unit
length across the AOM window is

d_
d𝑥

≈ Δ_

𝑊
, (2)

where Δ_ ≈ 5 nm is the optical bandwidth covered by the
AOM window, and 𝑊 = 20 mm is the width of the AOM
window. From Eq. 1 and Eq. 2, the limits on the laser
spectral phase gradient are therefore

𝑔𝜑 =
d𝜑
d_

≈ ±𝜋Δ 𝑓ac𝑊

𝑣acΔ_
. (3)

For our experimental parameters, 𝑔𝜑 = ±𝜋/0.015 rad/nm.
To encode this physical limit associated with the AOM

bandwidth into the network, we developed a regulariser
which acts to limit the gradient of the spectral phase profile to
a physical limit of 𝜋/0.015 rad/nm, corresponding to a max-
imum phase change per wavelength step of 𝛿𝜑 ≈ 0.153𝜋
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rad/step. For the purposes of limiting the gradient over
a discrete sampling, we define the discrete gradient as
Δ+ ( 𝑓 ) = 𝑓𝑖 − 𝑓𝑖+1. To account for the cyclic nature of
angular frequency in a differentiable manner, we calculate
the gradient by projecting into the complex plane. We then
take the absolute value of the discrete gradient of the net-
work’s output vector. We multiply the resulting function by
a high-gradient sigmoid function with an offset of 𝛿𝜑 to pro-
vide a differentiable approximation of a step function. Since
𝑅𝑒(𝑒𝑖 \ ) bounds between −1 and 1, and the input is between
−𝜋 and 𝜋, we divide 𝛿𝜑 by 𝜋 to arrive at the final definition
for the regulariser, shown in Eq. 4. Note that the first and
last elements are masked out from the difference calculation,
since we are not concerned with forcing the spectral phase
profile to begin and end at 0 rads.

The loss function encodes the translation invariant nature
of temporal pulse shaping by calculating the Pearson corre-
lation coefficient of the target temporal pulse profile against
the temporal pulse profile simulated from the spectral phase
profile output by the network. The simulation code is made
differentiable by the Keras[12] framework, allowing the net-
work training to be guided by the gradient of the underlying
function space. This further encodes physical laws into the
network.

1
𝑁

∑︁
|Δ+ (𝑒𝑖𝜑 (𝜔) ) | ∗ [𝜎( |Δ+ (𝑒𝑖𝜑 (𝜔) ) | − 𝛿𝜑/𝜋); [ = 100

(4)
The network architecture is a simple three layer ReLu[13]
DNN, with batch normalisation between the layers. The
final output layer uses a linear activation function. We use
the Adam optimiser[14] with a learning rate schedule de-
caying from 0.001 at a factor of 0.8 per 50 epochs when the
validation score plateaus.

RESULTS
By applying the principles of physically informed net-

works, we enable the model to learn to extrapolate appro-
priate spectral phase profiles, without non-physical phase
transitions, for arbitrary temporal pulse shapes in linear time.
This allows users to specify arbitrary temporal pulse profiles
and receive an input for the AOM that provides that profile
within milliseconds, a significant advantage over algorithmic
and iterative methods.

As in other works, we calculated the mean squared error
(MSE) of the output temporal intensity profile against those
in the test set, and find strong agreement (6.4e−3 ± 3.7e−5
MSE over 103 samples). Indeed, our results match simu-
lation extremely well, as shown in Fig. 3. We improved
upon previous results for arbitrary shapes by introducing
human-like data in the training set, as seen in Fig. 2.

Without the limitations of the SLM it is possible to achieve
very high quality matches to the target patterns, however
these are not physically achievable since they require spec-
tral phase transitions well beyond what is physically pos-
sible. However, by imposing physical limitations through

Figure 3: Demonstration of solutions found for arbitrary
pulse shapes. Note that these are physically realisable due
to the gradient constraint.

the PINN, we achieved high quality matches to arbitrary
physically realisable temporal intensity profiles.

We developed a control system for the AOM that enables
us to set spectral phase profiles and retrieve the resulting
intensity profile at 10Hz. This allowed us to generate arbi-
trary spectral phase profiles that can be applied to the AOM
directly from the ML model. After applying the spectral
phase profiles to the AOM, we measured the resulting tem-
poral intensity profile using a high-speed photodetector and
compared the measured profile to the profile generated by
the ML model. We observed that there were small discrep-
ancies between the two profiles. To address this, we used
the measured profile to fine-tune the ML model by perform-
ing a second round of training using the difference between
the simulated and observed intensity profiles as the training
signal. This resulted in a modest improvement to the overall
matching between the ML model’s output and the AOM’s.

CONCLUSION
By using physically informed networks we can build bet-

ter machine learning models which more accurately model
the reality of the target system. In doing so, we develop a
model for predicting spectral phase profiles for the photo-
cathode laser at CLARA, enabling arbitrary specification of
temporal intensity profiles for fine control over the bunch
profile. We discussed potential applications of this capabil-
ity to longitudinal masking, EEHG, and laser driven plasma
wakefield accelerators and proposed these as future research
directions.



14th International Particle Accelerator Conference,Venice, Italy

JACoW Publishing

ISBN: 978-3-95450-231-8

ISSN: 2673-5490

doi: 10.18429/JACoW-IPAC2023-THPL034

MC6.A27: Machine Learning and Digital Twin Modelling

4497

THPL: Thursday Poster Session: THPL

THPL034

Content from this work may be used under the terms of the CC BY 4.0 licence (© 2022). Any distribution of this work must maintain attribution to the author(s), title of the work, publisher, and DOI.



REFERENCES
[1] G. Penco et al., “Experimental demonstration of electron 

longitudinal-phase-space linearization by shaping the pho-
toinjector laser pulse,” Physical Review Letters, vol. 112,
p. 044 801, 2014.                                     
doi: 10 . 1103 / PhysRevLett . 112 . 044801

[2] C. W. Hillegas, J. X. Tull, D. Goswami, D. Strickland, and 
W. S. Warren, “Femtosecond laser pulse shaping by use of 
microsecond radio-frequency pulses,” Optics Letters, vol. 19, 
no. 10, pp. 737–739, 1994. doi: 10.1364/ol.19.000737

[3] K. Hornik, M. Stinchcombe, and H. White, “Multilayer feed-
forward networks are universal approximators,” Neural net-
works, vol. 2, no. 5, pp. 359–366, 1989.                                          
doi: 10.1016/0893-6080(89)90020-8

[4] S. Boscolo and C. Finot, “Artificial neural networks for 
nonlinear pulse shaping in optical fibers,” Optics & Laser 
Technology, vol. 131, p. 106 439, 2020.                      
doi: 10.1016/j. optlastec.2020.106439

[5] C. Xu et al., “Machine learning based spatial light modulator 
control for the photoinjector laser at flute,” in 12th Int. Par-
ticle Accelerator Conf.(IPAC’21), Campinas, Brazil, 2021. 
doi: 10.18429/JACoW-IPAC2021-WEPAB289

[6] M. Raissi, P. Perdikaris, and G. E. Karniadakis, “Physics 
informed deep learning (part i): Data-driven solutions of 
nonlinear partial differential equations. arxiv 2017,” arXiv 
preprint arXiv:1711.10561                                              
doi: 10.48550/arXiv.1711.10561

[7] M. M. Bronstein, J. Bruna, Y. LeCun, A. Szlam, and P. Van-
dergheynst, “Geometric deep learning: Going beyond eu-
clidean data,” IEEE Signal Processing Magazine, vol. 34, 
no. 4, pp. 18–42, 2017. doi: 10.1109/MSP.2017.2693418

[8] A. Bainbridge, D. Angal-Kalinin, J. Jones, T. Pacey, Y. 
Saveliev, E. Snedden, et al., “The design of the full energy 
beam exploitation (febe) beamline on clara,” in Proceedings 
of the International Particle Accelerator Conference, 2022.

[9] D. Xiang and G. Stupakov, “Echo-enabled harmonic gener-
ation free electron laser,” Physical Review Special Topics-
Accelerators and Beams, vol. 12, no. 3, p. 030 702, 2009.

[10] C. Schroeder et al., “Frequency chirp and pulse shape effects 
in self-modulated laser wakefield accelerators,” Physics of 
Plasmas, vol. 10, no. 5, pp. 2039–2046, 2003.

[11] W. Leemans et al., “Electron-yield enhancement in a laser-
wakefield accelerator driven by asymmetric laser pulses,” 
Physical review letters, vol. 89, no. 17, p. 174 802, 2002.

[12] F. Chollet et al. “Keras.” (2015), https://github.com/
fchollet/keras

[13] A. F. Agarap, “Deep learning using rectified linear units 
(relu),” arXiv preprint arXiv:1803.08375, 2018.        
doi: 10 . 48550/arXiv.1803.08375

[14] D. Kingma and J. Ba, “Adam: A method for stochastic opti-
mization,” International Conference on Learning Represen-
tations, Dec. 2014. doi: 10.48550/arXiv.1412.6980



14th International Particle Accelerator Conference,Venice, Italy

JACoW Publishing

ISBN: 978-3-95450-231-8

ISSN: 2673-5490

doi: 10.18429/JACoW-IPAC2023-THPL034

4498

MC6.A27: Machine Learning and Digital Twin Modelling

THPL034

THPL: Thursday Poster Session: THPL

Content from this work may be used under the terms of the CC BY 4.0 licence (© 2022). Any distribution of this work must maintain attribution to the author(s), title of the work, publisher, and DOI.


